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A b s t r a c t  

A new approach is presented for obtaining graph invafiants which have very high 
discriminating ability for different vertices within a graph. These invariants are ob- 
tained as the solution set (local invariant set, L01S) of a system of linear equations 
Q .X  = R, where Q is a topological matrix derived from the adjacency matrix of 
the graph, and R is a column vector which encodes either a topological property 
(vertex degree, number of vertices in the graph, distance sum) or a chemical property 
(atomic number). Twenty examples of LOISs are given and their degeneracy and 
ordering ability of vertices is discussed. Interestingly, in some cases the ordering of 
vertices obtained by means of these invariants parallels closely the ordering from an 
entirely different procedure based on Hierarchically Ordered Extended Connectivi- 
ties which was recently reported. New topological indices are easily constructed 
from LOISs. Excellent correlations are obtained for the boiling points and vaporiza- 
tion enthalpies of alkanes versus the topological index representing the sum of local 
vertex invariants. Less spectacular correlations with NMR chemical shifts, liquid 
phase density, partial molal volumes, motor octane numbers of alkanes or cavity 
surface areas of alcohols emphasize, however, the potential of this approach, which 
remains to be developed in the near future. 

1. I n t r o d u c t i o n  a n d  g r a p h  t h e o r e t i c a l  d e f i n i t i o n s  

The aim o f  this report  is to present a new way for  obtaining local graph invari- 

ants,  i.e. a number  associated with each vertex (point  or node)  o f  a graph such that  

(i) irrespective o f  any arbi trary number ing  of  the vertices, a given ver tex is always 

assigned the same number ,  (ii) topologically equivalent vertices are assigned equal 

numbers ,  and (iii) the same invariant should be obta ined  for  a corresponding vertex 
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of  any isomorphic graph with the given graph. Such a new approach should be of 
interest both to graph theorists and to chemists. We shall follow up some chemical 
consequences of  the new graph invariants by devising new topological indices and by 
testing their degeneracy (how many nonisomorphic graphs have the same topological 
index) and correlational ability. 

In molecular graphs, vertices represent atoms and edges (lines) represent 
covalent bonds. Usually, in order to simplify molecular graphs, hydrogen atoms are 
overlooked. Accordingly, we shall deal only with hydrogen-depleted graphs wherein 
vertices symbolize non-hydrogen atoms. The number of  lines meeting at a vertex is 
called the degree of that vertex. 

Graphs that can be written (embedded in a plane) so that no edges cross are 
called planar graphs. Acyclic graphs are called trees; all trees are planar graphs. We shall 
ignore disconnected graphs or directed graphs. 

The smallest number of edges which must be traversed in going from one 
vertex to another is called the distance between these two vertices; actually, this is a 
topological distance and not a geometric one. Two vertices at distance one are called 
adjacent. If two adjacent vertices have more than one edge joining them, the bond 
between the two vertices is a multiple (double, triple, etc.) bond, and the whole graph 
becomes a multigraph. 

The adjacencies characterize a graph up to isomorphism, i.e. we can completely 
reconstruct a graph if we know its adjacencies. A compact way to present them is by 
means of  the adjacency matrix A. This is a symmetrical (square) matrix with as many 
rows and columns as there are vertices. Entries aq = aji are zero if vertices i and j are 
non-adjacent, one if they are adjacent (and for multigraphs the entry may be higher 
than one, expressing the multiplicity of  the bond between vertices i and j) .  Unless 
we deal with loop graphs, where a vertex may be bonded with itself, the main diagonal 
of  A is composed of  zeroes. 

A more elaborate matrix is the distance matrix D. It has the same order as the 
adjacency matrix but the entries dq are distances between vertices i and j ;  therefore, 
D has zeroes only on the main diagonal. 

Other definitions will be clarified as we need them. For further reading, a 
selected bibliography is provided [1 - 5 ] .  

2. Devis ing t o p o l o g i c a l  ind ices  

In order to devise superior topological indices (TIs), we concerned ourselves 
initially with the mechanism of constructing a TI. It appears that for most TIs, such a 
mechanism must have two stages, both being significant for the degeneracy and the 
correlation abilities of  the desired TI. The first stage consists of  finding local vertex 
invariants (LOVIs) for each vertex. In the second stage, these invariants are operated 
upon to produce a number which represents the TI. We shall denote the above stages 
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as the assignment and the operational stages, respectively. It is instructive to list a few 
characteristics of these two stages and to distinguish them in the construction of 
known TIs. 

The assignment stage must encode the topological information of the structure 
whose TI is desired. The assignment stage can be either purely topological if hetero- 
atoms are not distinguished from carbon atoms, or chemical if to heteroatoms are 
assigned distinct numbers from carbon atoms, even when these are topologically 
equivalent. 

Table 1 presents some known TIs for which the assignment and operational 
stages can be distinguished. The LOVIs on which these TIs are based are exemplified 
for isopentane (1). The result of  the assignment stage is a set of LOVIs x i (number x 
is attached to vertex i). We shall denote the set X = {x i} as the local invariant set 
(LOIS) of the graph (molecule). For convenience, when comparing LOISs of different 
graphs, we shall assume that their constituent LOVIs form ordered sets. An ideal 
assignment stage will lead to distinct LOVIs for nonequivalent vertices in any given 
graph and to different LOISs for nonisomorphic graphs. 

The operational stage "operates" on the LOVIs by means of a mathematical 
formula which may also encompass topological information. Examples of operational 
stages which do not include the topology of the structure are simple addition of 
LOVIs, addition of  squares of LOVIs, etc., i.e. all vertices are treated identically by 
the mathematical formula. On the other hand, operations on certain classes of LOVIs, 
e .g. the geometrical means or the reciprocal geometrical means of LOVIs for any pair 
of  adjacent vertices, are operations which take into account the topology of the 
examined structure. The result of the operational stage is a single number which 
represents the final TI. Some operational stages in the construction of known TIs are 
also detailed in table 1. 

An equivalent construction of TIs may result if one assigns to each edge i a 
local edge invariant Yi, thus forming a LOIS Y = {yi}, and operating on Y. One can 
calculate, for example, TIs w, ?(, and J for 1 by first assigning to each bond the y/ 
values shown in fig. 1, and then adding these values; in these examples, the same 
operational formula (addition) was applied for all three TIs, although this was not 
the case when LOVIs were used (see table 1). Other examples include TIs p and N2, 
which in fact were defined on the basis of local edge invariants and not on LOVIs. 

w :18 X: 2,2701 J : 2+5395 

Fig. 1. Local edge invariants for isopentane I. 

It is thus possible to change the topological content of the assignment or operational 
stages when using local edge invariants instead of LOVIs. In the following discussion, 
we shall be concerned only with LOVIs. 
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In the construction of other TIs, these two stages can not be distinguished. 
Some TIs are derived by a more direct approach, e.g. Lovasz's lowest eigenvalue [13], 
or do not make use of vertex or edge invariants, e.g. Hosoya's index Z [14], or 
Bonchev's information indices [15]. For reviews on TIs, refs. [11], [16] and [17] 
should be consulted. 

The degeneracy of an index may be due either to the assignment stage or, 
accidentally, to the operational stage. A s s i g n m e n t  degeneracy  results if nonequivalent 
vertices receive identical LOVIs, or if nonisomorphic graphs have the same ordered 
LOISs. Operat ional  degeneracy  is encountered seldom and leads to the same TI for 
nonisomorphic graphs which have no assignment degeneracy. Simple operational 
stages on weakly differentiated LOVIs will certainly lead to highly degenerate TIs. 
Usually one has to compromise between the complexity of the two stages and the 
computing time in order to obtain low degeneracy for the final index. 

In the present paper we present a new approach for the assignment stage. We 
need to construct a LOIS as close as possible to the ideal, i.e. with no assignment 
degeneracy, but whose construction must remain simple and unequivocal. This 
approach may prove to lead to the lowest assignment degeneracy attained so far. The 
resulting LOISs can be employed either in various procedures for ordering structures 
or in operational stages to yield new TIs. Examples will be given both for the structure 
ordering and for the correlation abilities of  some new TIs. Some of these correlations 
give better results than previous correlations using other TIs. 

. N e w  g raph  invariants .  Def in i t ions ,  example s  and  a s s ignmen t  

degeneracy 

Our approach for obtaining a local invariant set (LOIS) X of local vertex 
invariants (LOVIs) x i consists of  solving a linear system of equations: 

Q- X : R,  (1) 

where Q is a matrix derived from the adjacency matrix, R is a column vector and X 
is the column vector of  LOVIs. Thus, for a graph with N vertices, the LOVIs x i 

(i = 1, 2 . . . . .  N)  are obtained by solving a system of N linear equations. The 
numerical values of the LOVIs and hence their properties and utility will depend 
strongly on the chosen matrices Q and R. By suitably choosing these matrices, a 
large variety of  LOISs can be obtained. We now describe the way in which matrices 
Q and R can be constructed. 

Matrix Q is derived from the adjacency matrix A, or different powers of the 
adjacency matrix (A 2, A ~ , . . . , A N) by replacing the diagonal elements aii (associ- 
ated with vertex i) with a nonzero parameter Pi.  This parameter Pi describes a certain 
property P of  vertex i. In turn, this property can be either topological,  e.g. the vertex 
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degree V = { v i }, the distance sum S = {s i }, the total number of vertices in the graph N, 
or chemical, e.g. the atomic number Z -- {z i }, ionization potential, electronegativity, 
etc. The column matrix R consists of  parameters r i which may or may not be identical 
with Pi, thus describing the same or another property of vertex i. If P is the property 
attributed to the diagonal terms of matrix A s (~ = 1 . . . . .  N )  and R is the property 
described by the column matrix, the system (1) can be written as: 

(AC~+ P . 1 ) . X  = R,  (2) 

where 1 is the unity matrix and a is the power to which the adjacency matrix is 
raised. We shall operate only with the adjacency matrix (a -- 1) or with the distance 
matrix D. A simpler way to denote system (2) is APR (or DPR if the distance matrix 
instead of  the adjacency matrix is employed). 

Figure 2 illustrates the procedure for obtaining a LOIS for the three isomers 
1 - 3 of pentane using the adjacency matrix A, the atomic numbers Z as property P, 
and the vertex degree V as property R. We shall denote this combination of para- 
meters as describing the equation system-AZV. The procedure outlined in fig. 2 has 
the following steps: (i) the vertices are arbitrarily numbered; (ii) the adjacency matrix 
is constructed; (iii) the diagonal zeroes are replaced by the atomic number z i of the 
corresponding vertex, i.e. six (all atoms being carbon atoms); (iv) the column matrix V 
is constructed from the vertex degrees of the appropriate vertices; and (v)the system 
AZV is solved numerically. The LOVIs x 1 - x  s thus obtained are indicated in the last 
column of fig. 2. Another example of LOVIs obtained analogously by solving the 
system-AZV is presented in fig. 3 for all isomers of pentane ( 1 - 3 ) ,  butylamine 
( 4 -  12) and butylborane (13 - 2 1 ) .  A brief inspection of the LOVIs reveals that the 
heteroatom (nitrogen with z = 7 or boron with z = 5) influences markedly the value of 
the LOVIs for the respective and adjacent vertices, while remote vertices remain un- 
affected. It should also be noted that the AZV-LOVI increases when either the atomic 
number of that vertex decreases, or the atomic numbers of adjacent vertices increase. 

Instead of solving numerically the system AZV, it is possible in special cases 
to obtain analytical expressions for LOVIs; simple linear systems are obtained, for 
example, for the AZV-LOVIs of linear alkanes, as will be shown in a separate paper. 

As general trends for these AZV-LOVIs, the following characteristics may be 
distinguished: (i) all AZV-LOVIs are positive and their numerical range is approxi- 
mately between 0.1 and 1; (ii) AZV-LOVIs increase from the end of the linear alkane 
towards its center; (iii) this increase is altemant (not monotonic) and asymptotic; 
(iv) as the number N of vertices increases in the linear alkane, the LOVIs increase 
asymptotically. 

If system (2) is solved using other properties instead of the atomic number Z 
for matrix P and the vertex degrees V for matrix R, different LOISs will be obtained. 
In table 2, twenty LOISs are listed together with the general trends of their LOVIs 
for the case of linear alkanes. The first entry, AZV, is the one presented above. 
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F i g .  3 .  

Graph x I x~ x 3 x 4 x s 

I 
C/C..,.C/C.. 0.0953 0.4281 0.2409 0.1265 
I 3 

0.0953 

/ C \ - / C ' - .  C 2 t.; ,. C 0 . 1 2 1 2  0 . 2 7 2 7  0 . 2 4 2 4  0 . 2 7 2 7  0 . 1 2 1 2  
I 3 5 

c 
I 

C - - C - - C  
j 21 3 

c 
5 

I 
N/C-..  / C  C t, 
l 3 

i 
.... N,.. / C  

C 2 C 
1 3 

I 
./C~..,..C 

I 
/ C \  jN  

c , c ,  

0.0625 0.6250 0.0625 0.0625 0.0625 

0.0814 0.4305 0.2405 0.1266 0.0949 

0.1063 0.3622 0.2522 0.1246 0.1063 

0.0943 0.4345 0.2047 0.1325 0.0943 

0.0954 0.4275 0.2441 0.1080 0.0954 

0.1035 0.2758 0.2413 0.2728 0.1212 

9 C / 2  b ~ b 
3 5 

0.1280 0.2318 0.2494 0.2715 0.1214 

/ C . , . .  .,...C... 
10 C 2 N ~ C 

12 

c 
I 

N - - C - - C  
1 2 I 3 

c 
5 

c_.l _c 
1 2 I 

c 
5 

0.1202 0.2790 0.2060 0.2790 0.1202 

0.0533 0.6267 0.0622 0.0622 0.0622 

0.0789 05263 0.0789 0.0789 0.0789 
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Fig. 3 (continued) 

Graph x~ x~ x 3 x 4 x s 

13 

lz, 

15 

16 

I 
B IC. .c IC 

c....B..c...c 
I 3 

I 
C/'~2~-B/C 
t 3 

I 
c/c\c , B 

0.1151 0.4246 0.2415 0.1264 0.0959 

0.0794 0.5233 0.2246 0.1292 0.0794 

0.0968 0.4189 0.2926 0.1179 0.0968 

0.0952 0.4289 0.2364 0.1527 0.0952 

17 B / C \ C - "  . \C 0.1463 0.2684 0.2432 0.2726 0.1212 5 3 s 

18 C/~'-C~a~,\C 0.1115 0.3312 0.2324 0.2744 0.1209 
1 3 $ 

19 u 2 t~ ~ t, 0.1227 0.2638 0.2945 0.2638 0.1227 
I 3 5 

I 
20 B---~C--C ' I 3 0.0755 0.6226 0.0629 0.0629 0.0629 

C 
5 

21 c---21 - -  ~ 0.0385 0.7692 0,0385 0.0385 0.0385 

c 

Fig. 3. AZV-LOVIs for hydrogen-depleted graphs of  pentane, butylamine and butyl-  

borane isomers. 
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Table 2 

LOVIs for linear alkanes, general trends 

LOIS Numerical Variation from the endpoints Variation with increasing 
No. Type range towards the center (x I ~ Xn) chain length for any x i 

1 AZV 0.1 - 1 

2 ASV 0.01 - 0.2 
3 DSV -0.02 - 0.12 
4 AZS 2 - 9 
5 ASZ 0.1 - 1 
6 DN2S 0.1 - 0.3 
7 DN 21 0 - 0.09 
8 AS1 0.02 - 0.1 
9 DS1 0 - 0.3 

10 ASN 0.2 - 0.7 
11 DSN 0.05 - 0.7 
12 DN~N 0.06 - 0.2 
13 ANS 1 - 4 
14 ANV 0.08 - 0_5 
15 AZN 0.3 - 1.5 
16 ANZ 05  - 1.7 
17 AN1 0.1 - 0.3 
18 DSZ 0.06 - 0.6 
19 ANN 0.7 - 0.9 
20 DN 2 Z 0.03 - 0.5 

alternant increase 
monotonic increase 
monotonic increase 
monotonic decrease 
monotonic increase 
monotonic decrease 
monotonic increase 
monotomc increase 
monotonic increase 
monotomc increase 
monotonic increase 
monotomc increase 
monotonic increase 
alternant increase 
alternant increase 
alternant decrease 
alternant decrease 
monotonic increase 
alternant decrease 
monotonic increase 

increase 
decrease 
increase 
increase 
increase 
increase 
decrease 
decrease 
decrease 
decrease 
decrease 
decrease 
increase 
decrease 
increase 
decrease 
decrease 
decrease 
increase 
decrease 

As a final e x a m p l e ,  table  3 p resen t s  the  LOVIs  for  p e n t a n e  i somers  1 - 3 in all 

the  t w e n t y  c o m b i n a t i o n s  de f ined  in t ab le  2.  

As can be seen f rom the  above  e x a m p l e s ,  this  t y p e  o f  a s s ignment  stage w h i c h  

involves solving a sy s t em o f  l inear  equa t i ons  leads  to  a wide  range o f  n u m e r i c a l  values 

for  the  L O V I s  (see tab le  2) ,  and thus  has g o o d  chances  to  y ie ld  l ow ass ignment  de- 

gene racy .  Moreove r ,  b y  c o n s t r u c t i o n ,  one fulfi ls  the  c o n d i t i o n  t ha t  equ iva l en t  ver t ices  

(e i the r  t o p o l o g i c a l l y  or  chemica l ly  equ iva l en t )  wil l  receive i den t i ca l  LOVIs ,  because  

these  a p p e a r  in iden t i ca l  e q u a t i o n s  in t he  sys t em.  This fac t  is shown b y  LOVIs  x 1 and 

x s for  / ,  x 1 and x s or  x 2 and  x 4 for  2 and b y  x 1, x 3, x 4 ,  and  x s for  3 ,  all having  

equal  values,  r e spec t ive ly ,  and  have t h e r e f o r e  been  l i s ted  on ly  once  in t ab le  3. 

When on ly  g r a p h - t h e o r e t i c a l  p r o p e r t i e s  are i n c l u d e d  in ma t r i ce s  P and R ,  the  

resu l t ing  LOISs  are g o o d  cand ida t e s  for  g r aph - the o re t i c a l  app l i ca t i ons ,  e.g. for  hier-  

archical  o r d e r i n g  o f  s t ruc tu res .  

We have c o m p u t e d  the  A Z V - L O I S s  (no .  1 in t ab le  2)  for  all a lkanes  w i th  up  to  

12 c a r b o n  a toms .  No  ass ignment  d e g e n e r a c y  was f o u n d ,  i .e.  in all cases d i s t i nc t  L O V I s  

were  o b t a i n e d  for  n o n e q u i v a l e n t  a t o m s .  Moreover ,  all i somers  have d i f f e r en t  ( o r d e r e d )  
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LOISs. In a few cases, for two different LOISs, the same LOVI was encountered when 
less than five significant digits were used for calculations, but on raising the computa- 
tional precision, such LOVIs became distinct. The remaining LOISs (nos. 2 - 2 0 )  were 
tested for all alkanes with less than nine carbon atoms, and nonexhaustively for alkanes 
with up to ten carbon atoms. Only one assignment degeneracy was found, namely for 
3 in the case of LOVIs ASZ, AS1 and ASN. Such a triad, denoted AST, differing only in 
the constant last term (T = Z, 1, or N) yields practically the same inter- and intra- 
molecular invariant ratios; other such triads are DST, DN2T or ANT. 

Various cyclic graphs were also tested for assignment degeneracy and only one 
general example was found in which two classes of nonisomorphic graphs have the 
same LOISs. These graphs are presented in fig. 4 (22 - 27) and consist of a ring of 2k 

22 23 24 

@ 
25 26 27 

28 29 30 

Fig. 4. Cyclic graphs with assignment 
degeneracy for various LOISs (see text). 

31 32 33 

x % > %  
34 35 36 3 7 

vertices linked pairwise by means of  k one-vertex bridges; in one class, each of the 
k bridges links two adjacent vertices on the ring ( 2 2 -  24), and in the other class, each 
bridge links two opposite vertices on the ring ( 2 5 -  27). None of the twenty LOISs 
differentiated these two classes of cyclic graphs. When the ring vertices are linked by 
k bridges consisting of two vertices, as in graphs 2 8 - 3 0  (for adjacent ring vertices) 
and 31 - 33 (for opposite ring vertices), the assignment degeneracy between these two 
classes of graphs is lifted in all cases involving the distance matrix or the distance sums 
(D or S), but persists otherwise, i.e. for LOISs nos. 1, 14, 15, 16, 17 and 19. This 
degeneracy also persists if longer bridges (more than two vertices) are used for linking 
adjacent or opposite ring vertices. 
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In contrast, graphs 34 and 35 present assignment degeneracy in all cases which 
do not include the adjacency matrix or the vertex degrees (A or V), i.e. for LOISs 
nos. 6 , 7 , 9 ,  11,12, 18 and 20. 

These examples of assignment degeneracy arise from the pairwise identity of 
systems (2) for the isomeric graphs presented above when these systems involve 
(i) both the adjacency and distance matrices (graphs 2 2 -  27), (ii)only the adjacency 
matrix (graphs 28 - 3 3 ) ,  or (iii) only the distance matrix (graphs 34 and 35). 

For other cyclic graphs, e.g. 36 and 37 which have the same topological 
index J [18], most LOISs are nondegenerate even when less than five significant 
digits are used for computations, but in other cases, especially when the LOVIs are 
small (e.g. for nos. 7 and 20) and not well distinguished, one has to increase the 
precision in calculations in order to obtain nondegenerate LOISs. 

The LOISs were generated by means of a computer program which, from a 
standard input (all vertex adjacencies), constructs the topological matrices A and D, 
calculates vertex degrees, distance sums, etc. and, according to the desired LOISs, 
assembles the appropriate combination for the system (2) of linear equations. This 
system is then solved with a preimposed precision by a simple and rapid iterative 
algorithm such as Gauss-Seidel [19] which is convergent for all LOISs, as the 
diagonal elements in the system matrix Q are significantly larger than all other elements. 
Usually ten to fifteen iterations are needed for convergence to the tenth decimal for 
all LOVIs. 

4. New topologica l  indices and opera t iona l  degeneracy  

Using the described assignment stage, various local invariant sets (LOISs) were 
devised and computed. Using the local vertex invariants (LOVIs) x i from these LOISs, 
we constructed new topological indices (TIs) by means of the operational stages de- 
fined by formulae (3)-(7) :  

TI(3) = Z xi (3) 

TI(4) = ~x/2 (4) 

TI(5) = ~[ x~/2 (5) 

TI(6) = ~ (x i • x/)- 1/2 (6) 

TI(7) = N .  (I-I xi)UN. (7) 

Operations in eqs. (3) - (5)  and (7) refer to all vertices i, and in eq. (6) to all edges 
i - j .  Topological indices combining the above formulae with LOISs nos. 1 - 2 0  were 
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computed for all alkanes with up to nine carbon atoms, as well as for the structures 
which were investigated for correlations and are given in the next paragraphs. The 
AZV-LOIS was used to calculate TIs (3), (6) and (7) for all alkanes with up to twelve 
carbon atoms, usually six significant digits being enough to discriminate most struc- 
tures. However, an operational degeneracy was found, namely for the TI defined by 
the simplest operational formula (3), in the case of the dodecane isomers 38 and 39, 

38 39 

X 1 = X I 0  X 2  X 3 X 4 X 5  X 6 

38 0.09478 0.43130 0.22264 0.23285 0.38028 0.38218 
39 0.09476 0.40314 0.38218 0.20078 0.41313 0.22264 

X T X 8 X 9 X I I  X I 2  

38 0.22364 0.27595 0.12068 0.10329 0.10297 
39 0.25102 0.27125 0.12146 0.10297 0.09781 

TI(3) TI(4) TI(5) TI(6) TI(7) 

38 2.665341944* 0.76044809 5 .44961  46 .50697  2.28833 
39 2.665341944* 0.76044817 6 .09239  46.50134 2.29103 

Fig. 5. LOVIs and TIs for dodecane isomers 38 and 39. Vertices with equal LOVIs 
are indicated. All numerical values are calculated with ten significant digits. Opera- 
tional degeneracy is denoted by an asterisk. 

depicted together with their AZV-LOVIs in fig. 5. This degeneracy persisted even 
when the LOVIs were computed to ten significant digits, thus demonstrating that 
simple operational stages may lead to operational degeneracies. Rather frequent 
operational degeneracies were encountered for TIs (3), (5), and especially (4), when 
less than six significant digits were used for calculations in the case of LOISs with 
small values for LOVIs (nos. 7 and 20). 

Earlier, the lowest degeneracy of a simple TI had been found for index J 
[18,20], which is nondegenerate for alkanes with up to eleven carbon atoms. The 
dodecane isomers for which J presents assignment degeneracy are well differentiated 
by most LOISs (exceptions being nos. 7 and 20, for which more than six significant 
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digits are needed to discriminate these isomers). This makes the present approach 
superior; even when simple operational stages are used, e.g. (3), nondegenerate TIs are 
obtained. 

5. Chemica l  appl ica t ions  

5.1. HIERARCHICAL ORDERING OF STRUCTURES 

Structures can be ordered hierarchically on the basis of their LOISs. Previous 
attempts for structure ordering have proven useful in various structure coding and 
retrieval systems [21]. We have investigated the ordering abilities of LOISs nos. 2 
(ASV), 3 (DSV), 4 (AZS), 18 (DSZ) and 20 (DN2Z) (cf. table 2). An interesting 
similarity was found between the LOIS-based vertex ordering and an ordering pro- 
cedure developed recently [22] and based on Hierarchically Ordered Extended Con- 
nectivities (HOC) [23]. 

LOVIs can be used for ordering in two ways: (i) for vertex ordering within a 
structure by giving priority to the vertex with a larger (or smaller) LOVI, and (ii) for 
structure ordering by giving priority to the structure with the larger (or smaller) 
previously ordered LOIS, the comparison of strings of numbers being easily dealt 
with by means of various algorithms. 

The vertex ordering as obtained by the HOC algorithm [23] for hexane isomers 
40 - 44 is presented in fig. 6. Exactly the same vertex ordering is obtained for 4 0 -  44 
using LOIS-DSV in increasing order and LOIS-AZS in decreasing order. LOIS-ASV 

2 4 I 

2 

~3 ~ 

Fig. 6. Vertex ordering of hexane isomers. 

used in increasing order of its LOVIs yields practically the same vertex ordering with 
one exception, namely the first two vertices are in the reverse order for 41 - 43 than 
in fig. 6. The other two LOISs (DSZ and DN 2Z) lead to more numerous inversions 
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in their vertex ordering. This similar vertex ordering by totally different procedures 
prompted us to investigate the vertex ordering of all alkanes with nonequivalent 
vertices with up to thirteen carbon atoms (identity trees) by means of LOISs ASV, 
DSV and AZS and to compared these with HOC ordering. 

A good overall correspondence was found between HOC vertex order and the 
vertex order obtained with these LOISs, the best fit being obtained with LOIS-DSV. 
The latter yields the same order as the HOC procedure for alkanes with up to nine 
vertices and has relatively few inversions for higher alkanes. Interestingly, these inver- 
sions arise from the preimposed conventional rules of the HOC algorithm. Without 
going into details (for which the original HOC papers should be consulted), it seems 
that the LOIS approach may be superior in discriminating between vertices, no pre- 
imposed rules being necessary. On the other hand, the HOC algoritt~rn is solved more 
rapidly. It might be rewarding to revise the preimposed rules of the HOC procedure in 
order to obtain the same ordering as by the LOIS approach (or vice versa, to devise a 
LOIS which gives the same ordering as the HOC procedure). 

This similarity points to the fact that graph-theoretical approaches usually have 
a deeply rooted significance. The graph-theoretical basis of  the HMO method is such 
an example. Why the HOC procedure and the ordering resulting from the LOIS 
approach are so similar remains to be explained. 

5.2. CORRELATIONS WITH CHEMICAL SHIFTS 

The HOC ordering was found to be similar to the order of  1 H-NMR chemical 
shifts of polycyclic aromatic hydrocarbons (PAHs) [22]. Inversions between HOC 
ordering and the order of chemical shifts were encountered in the bay and the K 
regions of PAHs. As the LOISs nos. 2 (ASV), 3(DSV) and 4 (AZS) give practically the 
same ordering as the HOC algorithm, it was expected that these LOISs will correlate 
at least qualitatively and intramolecularly with the 1 H-NMR chemical shifts of PAHs. 
It seemed, therefore, worthwhile to investigate the correlation abilities of LOISs ASV, 
DSV and AZS with chemical shifts and to see whether these correlations are quantita- 
tive and if they can be used for intermolecular comparisons. Apparently, no simple 
correlation exists between the 1H-NMR chemical shifts of the investigated PAHs 
(anthracene, phenanthrene, triphenylene, chrysene and benz [a] anthracene) and 
LOISs ASV, DSV and AZS. Although a definite correspondence between the LOVIs 
and the chemical shifts exists (i.e. a qualitative correlation, as with HOC ranks), it can 
not be extended for intermolecular comparisons, especially for LOISs ASV and AZS. 
Interestingly, the protons which have the largest deviations are the bay-region and 
L-region protons, a fact which might serve as a starting point in studies of carcinogen- 
ity versus LOISs of  PAHs. 

Investigation of 13C-NMR chemical shifts with LOISs of PAHs and correlations 
of I H- and ~ 3C-NMR chemical shifts of  acyclic compounds with LOISs are currently 
under investigation and will be reported separately. 



P.A. Filip et aL, A new approach for local graph invariants 77 

5.3. CORRELATIONS OF NEW TOPOLOGICAL INDICES WITH ALKANE BOILING POINTS 

The topological index defined for some of the new graph invariants by the 
simplest operational stage, namely the simple addition of LOVIs according to formula 
(3), was found to correlate extremely well with the boiling points of  alkanes. Twenty- 
one alkanes (from ethane to n-heptane) were considered for correlations with TI (3) 
calculated by means of all twenty LOISs. Poor correlations resulted when employing 
LOISs ASV, DSV, DS 1, ASN, DSN, DN 2 N, ANZ, AN 1, DSZ and ANN. This is in some 
cases due to the narrow range of variation for TI (3), e.g. for LOIS DN2N this range is 
between 0.77 and 0.8 for all the twenty-one alkanes. In other cases, e.g. when LOISs 
ASN or DSN are employed, TI (3) yields straight lines separately for the b.p. of each 
class of alkane isomers. 

Good correlations (r 2 > 0.95 and 
TI (3) based on the remaining LOISs, the 
obtained with LOIS AZV. Consequently, 

standard deviation g < 12 °) resulted with 
best (r 2 --- 0.9983, ~- = 2.0 °, n = 21) being 
we expanded the number of alkanes to 50 

(for which excellent data are available [24] ), and from a regression analysis we obtained 
the quadratic correlation equation (8) with r 2 = 0.9966 and g = 2.9 ° : 

b.p. (°C) = - 30.23. TI(3) 2 + 203.25. TI(3) - 142.89. (8) 

The calculated boiling points by means of  eq. (8) are listed in table 4. This represents 
the best correlation achieved until now by a single TI with the boiling point of alkanes. 
Previous correlations [24] which yielded comparable results made use of Randi~'s 
connectivity indices m×, but only when higher-order (rn > 3) connectivities were also 
taken into account in multiparametric correlations. 

From table 4 one can see that the largest deviations of the calculated b.p. by 
eq. (8) from the experimental values are encountered for the symmetrically branched 
alkanes with at least two side chains, e .g. tetramethylbutane (8.2°), 2,4-dimethylpentane 
(6.3 ° ), 3-ethyl-3-methylpentane (5.8 °), 2,5-dimethylhexane (5.2 °), 2,2,4,4-tetra- 
methylpentane (3.2°), as well as for other branched alkanes, e.g. 2,3,3-trimethyl- 
pentane (6.8°), 2,4-dimethylhexane (5.8°), 2,2,4-trimethylpentane (4.7 °) and 
2,4-dimethylheptane (4.5°). 

For the same data set of fifty alkanes, other LOISs give a standard deviation 
of at least 7 °, thus making the AZV-LOIS the best candidate for future correlations 
of boiling points for other substrates. 

5.4. CORRELATION OF TI (3) BASED ON AZV-LOIS WITH VAPORIZATION ENTHALPIES 
OF ALKANES 

According to Trouton's empirical rule, the vaporization enthalpies (AHvap) of 
alkanes are dependent on the boiling points. The excellent correlation of TI (3) based 
on AZV-LOIS with alkane boiling points prompted us to also investigate the correla- 
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Table 4 

Calculated and experimental boiling points (°C) and vaporization enthalpies AHva p (kcal. tool -~ ) 
for alkanes 

No. Alkane TI (3) 
B.p. AHva p 

Calc. b Exp.a CalcC Expa 

1 C 2 
2 C 3 
3 2-MeC 3 
4 C+ 
5 2, 2-M%C 3 
6 2-MeC+ 
7 C s 
8 2,2-M%C+ 
9 2, 3-M%C+ 

10 2-MeC s 
11 ~-MeC s 

12 C 6 
13 2, 2, 3-M% C+ 
14 2, 2-M%C s 
15 3, 3-M%C s 
16 2,4-M%C s 
17 2, 3-M%C s 
18 2-MeC 6 
19 3-MeC~ 
20 3-EtC s 
21 C~ 
22 2, 2, 4-M%Cs 
23 2, 2, 3, 3-Me+C+ 
24 2,2-M%C 6 
25 2,4-M% C+ 
26 2,5-M%C+ 
27 2, 2, 3-M% Cs 
28 3, 3-M%C+ 
29 2, 3, 4-M%Cs 
30 2,3-M%C~ 
31 2, 3, 3-M%C s 
32 3-E t -2 -M eC s 
33 2-MeC~ 
34 3,4-M%C+ 
35 4-MeC 7 
36 3-MeC7 
37 3-EtC 6 
38 3-Et-3-MeC s 
39 C 8 

40 2 ,2 ,  4, 4-Me+C s 

0.2857 - 87.3 - 88.6 2.760 2.264 
0£294 - 43.8 - 42.2 3.851 3.965 
0,7273 -11 .1  - 11.7 4.744 4.799 
0.7805 - 2.7 - 0.5 4,985 5.191 
0.8750 11.8 9.4 5.415 5.345 
0.9861 28.1 27.8 5.923 6.030 
1.0303 34.4 36.1 6.125 6.395 
1.1421 49.8 49.7 6.640 6.651 
1.2000 57.5 58.0 6.907 6.985 
1.2346 62.0 60.3 7.067 7.160 
1.2437 63.1 63.3 7.109 7.255 
1.2803 67.8 68.7 7.278 7.555 
1.3646 78.2 80.9 7.669 7.669 
1.3891 81.1 79.2 7,783 7.764 
1.4079 83.3 86.0 7.871 7.901 
1.4375 86.8 80.5 8.009 7.872 
1.4562 89.0 89.8 8.096 8.191 
1.4849 92.3 90.1 8.230 8.325 
1.4924 93+1 91.9 8.265 8.391 
1.5000 94.0 93.5 8,301 8.425 
15303 97.3 98.4 8.442 8.739 
1.5905 103.9 99.2 8.725 8.402 
15 385 98.3 106.5 8.481 8.410 
1.6397 109.1 106.8 8,956 8.915 
1.6955 114.8 109.0 9.218 9.029 
1.6897 114.2 109.0 9.191 9.051 
1.6194 107.0 109.8 8.860 8.826 
1.6552 110.7 112.0 9.028 8.973 
1.6673 111.9 113£ 9.085 9.014 
1.7052 115.8 114,0 9264  9.272 
1.6290 108.0 114.8 8.905 8.897 
1.7111 116.4 115.6 9.292 9.209 
1.7348 118.7 117.7 9.403 9.484 
1.7127 116.5 117.7 9.299 9.316 
1.7411 119.3 117.7 9.433 9.483 
1,7426 119.5 117.0 9.440 9.521 
1.7489 120.1 118,0 9,470 9.476 
1.6723 1125 118.3 9.109 9.081 
1.7803 123.1 125.7 9.618 9.915 
1.7419 119.4 122.7 9.437 9.580 
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Table 4 (continued) 

No. Alkane TI (3) 
B.p. AH,~p 

Calc. b Exp. a Calc. c Exp. a 

41 2,4-M%C 7 1.9442 
42 2,6-Mea C 7 1.9393 
43 2, 5-M% C 7 1.9474 
44 3,3-M% C 7 1.9056 
45 2, 3-M% C ~ 1.9553 
46 4-EtC~ 1.9978 
47 4-MeC 8 1.9913 
48 2-MeC 8 1.9848 
49 3-MeC 8 1.9926 
50 2,7-M%C 8 2.1894 
51 2, 2, 3-M%C6 1.8686 
52 2,2,4-M% C o 1.8488 
53 2, 2, 5-M% C~ 1.8447 
54 2,3,5-M%C 6 1.9085 
55 2,2, 3, 3-Me4C s 1.8014 
56 2, 2, 3,4-M%C s 1.8290 
57 2, 3, 3, 4-M%C S 1.8487 
58 C~o 2.2803 
59 C1~ 2.7803 
60 C16 3.7803 

138.0 133.5 
137.6 135.2 
138.3 136.0 
134.6 137.3 
138.9 140.5 
142.5 141.2 
142.0 142.4 
141.4 142.8 
142.1 143.5 
157.2 159.6 

10.036 9.871 
9.942 9.478 
9.923 9.580 

10.226 9.910 
9.718 9.871 
9.489 9.478 
9.942 9.910 

12.004 12.276 
14.437 14.650 
19.440 19.450 

aFrom ref. [24] ; bWith eq. (8); cWith eq. (9). 

t ion o f  TI  (3) with AHva p. The results are presented in the second part  o f  table 4; 

again, a set o f  fifty alkanes was considered for which exper imenta l  values o f  AH-va p 

are o f  highest quali ty.  The regression analysis yielded the quadratic equat ion (9), a 

correlat ion coefficient  r 2 = 0.9945 and a standard deviation ~ = 0.26 k c a l . m o l  -x" 

A/-/va p (kcal • mo1-1)  = 0 .0923-  TI(3)  2 + 4 . 3977 -  TI(3)  + 1.4965. (9) 

I f  instead o f  the parabolic equat ion (9) a linear regression is a t t empted ,  the 

correlat ion coefficient  decreases to 0.9938,  the largest deviation encountered  being 

that  for e thane.  
Again, this result represents the best correlation o f  a single TI  wi th  2J-/vap, 

a l though by  using higher-order connect ivi ty indices [24] (multiple TIs) for  near ly the 
same data set (44 alkanes), a correlation coefficient r 2 = 0.9999 and a s tandard 

deviation 3- = 0.042 kcal .  mo l -  x were obtained.  
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5.5. OTHER CORRELATIONS WITH LOIS-BASED TIs 

Good correlations were also found between motor octane numbers (MON) 
of  various classes of  alkanes (n-alkanes, methylalkanes, dimethylalkanes) and TI (3) 
based on LOISs DSV, AZS and especially ASV. The latter is presented in fig. 7 for 
n-alkanes and all branched alkanes with one methyl or ethyl side chain. Previous 
correlations of MON with TIs gave better correlation coefficients for a larger set of  
alkanes [25], not necessarily related structurally. 

Other molecular properties were found to correlate satisfactorily with TI(3) 
based on AZV-LOIS. The properties include liquid phase densities of alkanes (fig. 8), 
and cavity surface areas of alcohols (fig. 9). These areas in turn were used to correlate 
nonspecific, local anesthesic properties [26]. The best correlation of  partial molal 
volumes was found for TI (3)based on LOIS ANN for 33 C s - C l o  alkanes. For ten 
n-alkanes (Cs-C20) ,  a linear regression yielded for molal volumes r 2= 0.9999 both 
versus ANN-LOIS and N, the number of carbon atoms in the n-alkane. Although 
better correlations with other different TIs have been presented for these properties 
[ 2 4 - 2 7 ] ,  the above examples stress the versatility of  the present TIs based on LOISs. 

6. Conc lus ions  and  perspec t ives  

A new approach for graph-theoretical invariants has been presented; it has 
enabled us to explore twenty new such invafiants, but many more can be imagined, 
and would have to be tested. 

On the basis of  these new invariants, one may devise a wide variety of topo- 
logical indices, characterizing the whole graph by a single number. We tested only a 
few of the possible TIs and found which ones have low degeneracy and good correla- 
tional ability. There are as yet a few outstanding examples which surpass all others, 
but more work is needed before one can reach a definite conclusion and select one 
optimal TI. A few chemical correlations were tried, with challenging results. 

It is highly interesting that the hierarchical ordering of the vertices in graphs 
provided by a few new graph invariants closely resembles the HOC ordering, which 
has been shown to correlate with experimental molecular data such as 1H-NMR 
chemical shifts in polycyclic aromatic hydrocarbons. 

The perspectives which are opened by the new graph invafiants are varied both 
in their mathematical and chemical applications. Thus, one should be able to use 
extremal values of vertex invafiants for defining the graph center or eccentricity. One 
might devise analogously edge invafiants based on the new vertex invariants. 

Among possible chemical applications, the first one is to continue and diversify 
the approach outlined in the present paper. This is being done in our group. Other 
attractive areas are to determine whether some of the new vertex invafiants have any 
chemical significance; this is no easy task, if one remembers that it needed Erich 
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Hiickel's genius to discover that eigenvalues of  adjacency matrices correlated with 
electronic energies in various orbitals, and that the corresponding eigenvectors (which 
are vertex graph invariants) represented contributions of  atomic orbitals in the LCAO 
method.  

One should also stress the fact that the presence of  heteroatoms is taken into 
account easily and naturally by using atomic numbers Z as property P and/or R ;  
alternatively, if  one wishes to have periodically varying properties, one may use 
relative electronegativities or relative covalent radii (with carbon as the standard atom), 
as indicated elsewhere [28]. Previous methods for taking heteroatoms into account 
[24,29] were fairly unsatisfactory because of  their lack o f  flexibility [29] or of  
theoretical motivation [24]. 
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