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Abstract

A new approach is presented for obtaining graph invariants which have very high
discriminating ability for different vertices within a graph. These invariants are ob-
tained as the solution set (Jocal invariant set, LOIS) of a system of linear equations
Q+X = R, where Q is a topological matrix derived from the adjacency matrix of
the graph, and R is a column vector which encodes either a topological property
(vertex degree, number of vertices in the graph, distance sum) or a chemical property
(atomic number). Twenty examples of LOISs are given and their degeneracy and
ordering ability of vertices is discussed. Interestingly, in some cases the ordering of
vertices obtained by means of these invariants parallels closely the ordering from an
entirely different procedure based on Hierarchically Ordered Extended Connectivi-
ties which was recently reported. New topological indices are easily constructed
from LOISs. Excellent correlations are obtained for the boiling points and vaporiza-
tion enthalpies of alkanes versus the topological index representing the sum of local
vertex invariants. Less spectacular correlations with NMR chemical shifts, liquid
phase density, partial molal volumes, motor octane numbers of alkanes or cavity
surface areas of alcohols emphasize, however, the potential of this approach, which
remains to be developed in the near future.

1. Introduction and graph theoretical definitions

The aim of this report is to present a new way for obtaining local graph invari-
ants, i.e. a number associated with each vertex (point or node) of a graph such that
(i) irrespective of any arbitrary numbering of the vertices, a given vertex is always
assigned the same number, (ii) topologically equivalent vertices are assigned equal
numbers, and (iii) the same invariant should be obtained for a corresponding vertex
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of any isomorphic graph with the given graph. Such a new approach should be of
interest both to graph theorists and to chemists. We shall follow up some chemical
consequences of the new graph invariants by devising new topological indices and by
testing their degeneracy (how many nonisomorphic graphs have the same topological
index) and correlational ability.

In molecular graphs, vertices represent atoms and edges (lines) represent
covalent bonds. Usually, in order to simplify molecular graphs, hydrogen atoms are
overlooked. Accordingly, we shall deal only with hydrogen-depleted graphs wherein
vertices symbolize non-hydrogen atoms. The number of lines meeting at a vertex is
called the degree of that vertex.

Graphs that can be written (embedded in a plane) so that no edges cross are
called planar graphs. Acyclic graphs are called trees; all trees are planar graphs. We shall
ignore disconnected graphs or directed graphs.

The smallest number of edges which must be traversed in going from one
vertex to another is called the distance between these two vertices; actually, this is a
topological distance and not a geometric one. Two vertices at distance one are called
adjacent. 1f two adjacent vertices have more than one edge joining them, the bond
between the two vertices is a multiple (double, triple, etc.) bond, and the whole graph
becomes a multigraph.

The adjacencies characterize a graph up to isomorphism, i.e. we can completely
reconstruct a graph if we know its adjacencies. A compact way to present them is by
means of the adjacency matrix A. This is a symmetrical (square) matrix with as many
rows and columns as there are vertices. Entries a;; = a;; are zero if vertices i and j are
non-adjacent, one if they are adjacent (and for multigraphs the entry may be higher
than one, expressing the multiplicity of the bond between vertices i and j). Unless
we deal with loop graphs, where a vertex may be bonded with itself, the main diagonal
of 4 is composed of zeroes.

A more elaborate matrix is the distance matrix D. It has the same order as the
adjacency matrix but the entries dij are distances between vertices { and j; therefore,
D has zeroes only on the main diagonal.

Other definitions will be clarified as we need them. For further reading, a
selected bibliography is provided [1-5].

2. Devising topological indices

In order to devise superior topological indices (TIs), we concerned ourselves
initially with the mechanism of constructing a TI. It appears that for most TlIs, such a
mechanism must have two stages, both being significant for the degeneracy and the
correlation abilities of the desired TI. The first stage consists of finding local vertex
invarignts (LOVIs) for each vertex. In the second stage, these invariants are operated
upon to produce a number which represents the TI. We shall denote the above stages
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as the assignment and the operational stages, respectively. It is instructive to list a few
characteristics of these two stages and to distinguish them in the construction of
known TIs.

The assignment stage must encode the topological information of the structure
whose TI is desired. The assignment stage can be either purely topological if hetero-
atoms are not distinguished from carbon atoms, or chemical if to heteroatoms are
assigned distinct numbers from carbon atoms, even when these are topologically
equivalent.

Table 1 presents some known TIs for which the assignment and operational
stages can be distinguished. The LOVIs on which these TIs are based are exemplified
for isopentane (1). The result of the assignment stage is a set of LOVIs x; (number x
is attached to vertex i). We shall denote the set X = {xi} as the local invariant set
(LOIS) of the graph (molecule). For convenience, when comparing LOISs of different
graphs, we shall assume that their constituent LOVIs form ordered sets. An ideal
assignment stage will lead to distinct LOVIs for nonequivalent vertices in any given
graph and to different LOISs for nonisomorphic graphs.

The operational stage “operates” on the LOVIs by means of a mathematical
formula which may also encompass topological information. Examples of operational
stages which do not include the topology of the structure are simple addition of
LOVIs, addition of squares of LOVIs, etc., i.e. all vertices are treated identically by
the mathematical formula. On the other hand, operations on certain classes of LOVIs,
e .g. the geometrical means or the reciprocal geometrical means of LOVIs for any pair
of adjacent vertices, are operations which take into account the topology of the
examined structure. The result of the operational stage is a single number which
represents the final TI. Some operational stages in the construction of known TIs are
also detailed in table 1.

An equivalent construction of TIs may result if one assigns to each edge i a
local edge invariant y;, thus forming a LOIS Y = { y,-}, and operating on Y. One can
calculate, for example, TIs w, X, and J for I by first assigning to each bond the y;
values shown in fig. 1, and then adding these values; in these examples, the same
operational formula (addition) was applied for all three TIs, although this was not
the case when LOVIs were used (see table 1). Other examples include Tls p and N, ,
which in fact were defined on the basis of local edge invariants and not on LOVIs.

o bl ehlg
28 4!
> s 7w

w =18 X=2.2701 J1=2.5395

Fig. 1. Local edge invariants for isopentane I.

It is thus possible to change the topological content of the assignment or operational
stages when using local edge invariants instead of LOVIs. In the following discussion,
we shall be concerned only with LOVIs.
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In the construction of other TIs, these two stages can not be distinguished.
Some TIs are derived by a more direct approach, e.g. Lovasz’s lowest eigenvalue [13],
or do not make use of vertex or edge invariants, e.g. Hosoya’s index Z [14], or
Bonchev’s information indices [15]. For reviews on TIs, refs. [11], [16] and [17]
should be consulted.

The degeneracy of an index may be due either to the assignment stage or,
accidentally, to the operational stage. Assignment degeneracy results if nonequivalent
vertices receive identical LOVIs, or if nonisomorphic graphs have the same ordered
LOISs. Operational degeneracy is encountered seldom and leads to the same TI for
nonisomorphic graphs which have no assignment degeneracy. Simple operational
stages on weakly differentiated LOVIs will certainly lead to highly degenerate TIs.
Usually one has to compromise between the complexity of the two stages and the
computing time in order to obtain low degeneracy for the final index.

In the present paper we present a new approach for the assignment stage. We
need to construct a LOIS as close as possible to the ideal, i.e. with no assignment
degeneracy, but whose construction must remain simple and unequivocal. This
approach may prove to lead to the lowest assignment degeneracy attained so far. The
resulting LOISs can be employed either in various procedures for ordering structures
or in operational stages to yield new TIs. Examples will be given both for the structure
ordering and for the correlation abilities of some new TIs. Some of these correlations
give better results than previous correlations using other TIs.

3. New graph invariants. Definitions, examples and assignment
degeneracy

Our approach for obtaining a local invariant set (LOIS) X of local vertex
invariants (LOVIs) x; consists of solving a linear system of equations:

0-X =R, 6]

where Q is a matrix derived from the adjacency matrix, R is a column vector and X
is the column vector of LOVIs. Thus, for a graph with NV vertices, the LOVIs x;
(i=1,2,...,N) are obtained by solving a system of N linear equations. The
numerical values of the LOVIs and hence their properties and utility will depend
strongly on the chosen matrices Q and R. By suitably choosing these matrices, a
large variety of LOISs can be obtained. We now describe the way in which matrices
Q and R can be constructed.

Matrix Q is derived from the adjacency matrix A, or different powers of the
adjacency matrix (42, A%, ..., A™) by replacing the diagonal elements a;; (associ-
ated with vertex i) with a nonzero parameter p;. This parameter p; describes a certain
property P of vertex i. In turn, this property can be either topological, e.g. the vertex
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degree V= {vi}, the distance sum § = {s,. }, the total number of vertices in the graph N,
or chemical, e.g. the atomic number Z = {z,- }, ionization potential, electronegativity,
etc. The column matrix R consists of parameters r; which may or may not be identical
with p;, thus describing the same or another property of vertex i. If P is the property
attributed to the diagonal terms of matrix A% (@ =1, ..., N)and R is the property
described by the column matrix, the system (1) can be written as:

(A%+ P-1)-X = R, (2)

where 1 is the unity matrix and « is the power to which the adjacency matrix is
raised. We shall operate only with the adjacency matrix (o = 1) or with the distance
matrix D. A simpler way to denote system (2) is APR (or DPR if the distance matrix
instead of the adjacency matrix is employed).

Figure 2 illustrates the procedure for obtaining a LOIS for the three isomers
1 — 3 of pentane using the adjacency matrix A, the atomic numbers Z as property P,
and the vertex degree V as property R. We shall denote this combination of para-
meters as describing the equation system-AZV. The procedure outlined in fig. 2 has
the following steps: (i) the vertices are arbitrarily numbered; (ii) the adjacency matrix
is constructed; (iii) the diagonal zeroes are replaced by the atomic number z; of the
corresponding vertex, i.e. six (all atoms being carbon atoms); (iv) the column matrix V
is constructed from the vertex degrees of the appropriate vertices; and (v) the system
AZV is solved numerically. The LOVIs x; —x, thus obtained are indicated in the last
column of fig. 2. Another example of LOVIs obtained analogously by solving the
system-AZV is presented in fig. 3 for all isomers of pentane (I —3), butylamine
(4 — 12) and butylborane (13 — 21). A brief inspection of the LOVIs reveals that the
heteroatom (nitrogen with z = 7 or boron with z = 5) influences markedly the value of
the LOVIs for the respective and adjacent vertices, while remote vertices remain un-
affected. It should also be noted that the AZV-LOVI increases when either the atomic
number of that vertex decreases, or the atomic numbers of adjacent vertices increase.

Instead of solving numerically the system AZV, it is possible in special cases
to obtain analytical expressions for LOVIs; simple linear systems are obtained, for
example, for the AZV-LOVIs of linear alkanes, as will be shown in a separate paper.

As general trends for these AZV-LOVIs, the following characteristics may be
distinguished: (i) all AZV-LOVIs are positive and their numerical range is approxi-
mately between 0.1 and 1; (ii) AZV-LOVIs increase from the end of the linear alkane
towards its center; (ili) this increase is alternant (not monotonic) and asymptotic;
(iv) as the number N of vertices increases in the linear alkane, the LOVIs increase
asymptotically.

If system (2) is solved using other properties instead of the atomic number Z
for matrix P and the vertex degrees ¥ for matrix R, different LOISs will be obtained.
In table 2, twenty LOISs are listed together with the general trends of their LOVIs
for the case of linear alkanes. The first entry, AZV, is the one presented above.
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Fig. 3.
Graph x, X, X, x, X
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Fig. 3 (continued)

Graph x, x, x4 X, X
5
c
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Fig. 3. AZV-LOVIs for hydrogen-depleted graphs of pentane, butylamine and butyl-
borane isomers.
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Table 2

LOVIs for linear alkanes, general trends

LOIS Numerical Variation from the endpoints Variation with increasing
No. Type range towards the center (x, —x,,) chain length for any x;
1 AZV 01-1 alternant increase increase
2 ASV 001-0.2 monotonic increase decrease
3 DSV -0.02 -0.12 monotonic increase increase
4 AZS 2-9 monotonic decrease increase
5 ASZ 01-1 monotonic increase increase
6 DN2S 01-03 monotonic decrease increase
7 DN?1 0-0.09 monotonic increase decrease
8 AS1 0.02-0.1 monotonic increase decrease
9 DS1 0-03 monotonic increase decrease
10 ASN 02-07 monotonic increase decrease
11 DSN 0.05 ~-07 monotonic increase decrease
12 DN2N 006 —02 monotonic increase decrease
13 ANS 1-4 monotonic increase increase
14 ANV 008 -05 alternant increase decrease
15 AZN 03-15 alternant increase increase
16 ANZ 05-1.7 alternant decrease decrease
17 AN1 0.1-03 alternant decrease decrease
18 DSz 0.06 -0.6 monotonic increase decrease
19 ANN 07-09 alternant decrease increase
20 DN?*Z 00305 monotonic increase decrease

As a final example, table 3 presents the LOVIs for pentane isomers I — 3 in all
the twenty combinations defined in table 2.

As can be seen from the above examples, this type of assignment stage which
involves solving a system of linear equations leads to a wide range of numerical values
for the LOVIs (see table 2), and thus has good chances to yield low assignment de-
generacy. Moreover, by construction, one fulfils the condition that equivalent vertices
(either topologically or chemically equivalent) will receive identical LOVIs, because
these appear in identical equations in the system. This fact is shown by LOVIs x, and
xg for I, x; and x4 or x, and x, for 2 and by x,, X3, X4,and x for 3, all having
equal values, respectively, and have therefore been listed only once in table 3.

When only graph-theoretical properties are included in matrices P and R, the
resulting LOISs are good candidates for graph-theoretical applications, e.g. for hier-
archical ordering of structures.

We have computed the AZV-LOISs (no. 1 in table 2) for all alkanes with up to
12 carbon atoms. No assignment degeneracy was found, i.e. in all cases distinct LOVIs
were obtained for nonequivalent atoms. Moreover, all isomers have different (ordered)
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LOISs. In a few cases, for two different LOISs, the same LOVI was encountered when
less than five significant digits were used for calculations, but on raising the computa-
tional precision, such LOVIs became distinct. The remaining LOISs (nos. 2—-20) were
tested for all alkanes with less than nine carbon atoms, and nonexhaustively for alkanes
with up to ten carbon atoms. Only one assignment degeneracy was found, namely for
3 in the case of LOVIs ASZ, AS1 and ASN. Such a triad, denoted AST, differing only in
the constant last term (T = Z, 1, or N) yields practically the same inter- and intra-
molecular invariant ratios; other such triads are DST, DN?T or ANT.

Various cyclic graphs were also tested for assignment degeneracy and only one
general example was found in which two classes of nonisomorphic graphs have the
same LOISs. These graphs are presented in fig. 4 (22 — 27) and consist of a ring of 2k

22 23 S

25 26 27
m & gg Fig. 4. Cyclic graphs with assignment
degeneracy for various LOISs (see text).
28 29 0 g y

e ®
A

vertices linked pairwise by means of k one-vertex bridges; in one class, each of the
k bridges links two adjacent vertices on the ring (22 — 24), and in the other class, each
bridge links two opposite vertices on the ring (25 — 27). None of the twenty LOISs
differentiated these two classes of cyclic graphs. When the ring vertices are linked by
k bridges consisting of two vertices, as in graphs 28 — 30 (for adjacent ring vertices)
and 31 — 33 (for opposite ring vertices), the assignment degeneracy between these two
classes of graphs is lifted in all cases involving the distance matrix or the distance sums
(D or §), but persists otherwise, i.e. for LOISs nos. 1, 14, 15, 16, 17 and 19. This
degeneracy also persists if longer bridges (more than two vertices) are used for linking
adjacent or opposite ring vertices.
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In contrast, graphs 34 and 35 present assignment degeneracy in all cases which
do not include the adjacency matrix or the vertex degrees (4 or V), i.e. for LOISs
nos.6,7,9,11,12,18 and 20.

These examples of assignment degeneracy arise from the pairwise identity of
systems (2) for the isomeric graphs presented above when these systems involve
(i) both the adjacency and distance matrices (graphs 22 — 27), (ii) only the adjacency
matrix (graphs 28 — 33), or (iii) only the distance matrix (graphs 34 and 35).

For other cyclic graphs, e.g. 36 and 37 which have the same topological
index J [18], most LOISs are nondegenerate even when less than five significant
digits are used for computations, but in other cases, especially when the LOVIs are
small (e.g. for nos. 7 and 20) and not well distinguished, one has to increase the
precision in calculations in order to obtain nondegenerate LOISs.

The LOISs were generated by means of a computer program which, from a
standard input (all vertex adjacencies), constructs the topological matrices A and D,
calculates vertex degrees, distance sums, etc. and, according to the desired LOISs,
assembles the appropriate combination for the system (2) of linear equations. This
system is then solved with a preimposed precision by a simple and rapid iterative
algorithm such as Gauss—Seidel [19] which is convergent for all LOISs, as the
diagonal elements in the system matrix Q are significantly larger than all other elements.
Usually ten to fifteen iterations are needed for convergence to the tenth decimal for
all LOVIs.

4. New topological indices and operational degeneracy

Using the described assignment stage, various local invariant sets (LOISs) were
devised and computed. Using the local vertex invariants (LOVIs) x; from these LOISs,
we constructed new topological indices (TIs) by means of the operational stages de-
fined by formulae (3)—(7):

TI(3) = 2. x, 3)
TI(4) = 2.} @)
TI(S) = 2. x? )
TI(6) = Z(x,.-x].)'llz (©6)
TI(7) = N- (T x)'™. ™

Operations in eqs. (3)—(5) and (7) refer to all vertices i, and in eq. (6) to all edges
i—j. Topological indices combining the above formulae with LOISs nos. 120 were
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computed for all alkanes with up to nine carbon atoms, as well as for the structures
which were investigated for correlations and are given in the next paragraphs. The
AZV-LOIS was used to calculate TIs (3), (6) and (7) for all alkanes with up to twelve
carbon atoms, usually six significant digits being enough to discriminate most struc-
tures. However, an operational degeneracy was found, namely for the TI defined by
the simplest operational formula (3), in the case of the dodecane isomers 38 and 39,

10 12 10

38 39
Xy T Xy X, X3 X4 x5 g
38 0.09478 043130 0.22264 0.23285 0.38028 0.38218
39 0.09476 040314 0.38218 0.20078 0.41313 0.22264
X Xg Xo X1 X12

38 022364 027595 0.12068 0.10329  0.10297
39 0.25102 027125 0.12146 0.10297 0.09781

TI(3) TI(4) TI(S) TI(6) TI(T)

38 21565341944:'{r 0.76044809 5.44961 46.50697 2.28833
39 2.665341944 0.76044817 6.09239 46.50134 2.29103

Fig. 5. LOVIs and TIs for dodecane isomers 38 and 39. Vertices with equal LOVIs
are indicated. All numerical values are calculated with ten significant digits. Opera-
tional degeneracy is denoted by an asterisk.

depicted together with their AZV-LOVIs in fig. 5. This degeneracy persisted even
when the LOVIs were computed to ten significant digits, thus demonstrating that
simple operational stages may lead to operational degeneracies. Rather frequent
operational degeneracies were encountered for Tls (3), (5), and especially (4), when
less than six significant digits were used for calculations in the case of LOISs with
small values for LOVIs (nos. 7 and 20).

Earlier, the lowest degeneracy of a simple TI had been found for index J
[18,20], which is nondegenerate for alkanes with up to eleven carbon atoms. The
dodecane isomers for which J presents assignment degeneracy are well differentiated
by most LOISs (exceptions being nos. 7 and 20, for which more than six significant
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digits are needed to discriminate these isomers). This makes the present approach
superior; even when simple operational stages are used, e.g. (3), nondegenerate TIs are
obtained.

5. Chemical applications

5.1. HIERARCHICAL ORDERING OF STRUCTURES

Structures can be ordered hierarchically on the basis of their LOISs. Previous
attempts for structure ordering have proven useful in various structure coding and
retrieval systems [21]. We have investigated the ordering abilities of LOISs nos. 2
(ASV), 3 (DSV), 4 (AZS), 18 (DSZ) and 20 (DN?Z) (cf. table 2). An interesting
similarity was found between the LOIS-based vertex ordering and an ordering pro-
cedure developed recently [22] and based on Hierarchically Ordered Extended Con-
nectivities (HOC) [23].

LOVIs can be used for ordering in two ways: (i) for vertex ordering within a
structure by giving priority to the vertex with a larger (or smaller) LOVI, and (ii) for
structure ordering by giving priority to the structure with the larger (or smaller)
previously ordered LOIS, the comparison of strings of numbers being easily dealt
with by means of various algorithms.

The vertex ordering as obtained by the HOC algorithm [23] for hexane isomers
40 — 44 is presented in fig. 6. Exactly the same vertex ordering is obtained for 40— 44
using LOIS-DSV in increasing order and LOIS-AZS in decreasing order. LOIS-ASV

1.0'/2\3/:\/1‘
7
“1 )\/\
5 3
2 4 1
L2 '343‘
2
4
43 /*‘\/!
223
t
44 2 !

Fig. 6. Vertex ordering of hexane isomers.

used in increasing order of its LOVIs yields practically the same vertex ordering with
one exception, namely the first two vertices are in the reverse order for 47 —43 than
in fig. 6. The other two LOISs (DSZ and DN?Z) lead to more numerous inversions
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in their vertex ordering. This similar vertex ordering by totally different procedures
prompted us to investigate the vertex ordering of all alkanes with nonequivalent
vertices with up to thirteen carbon atoms (identity trees) by means of LOISs ASV,
DSV and AZS and to compared these with HOC ordering.

A good overall correspondence was found between HOC vertex order and the
vertex order obtained with these LOISs, the best fit being obtained with LOIS-DSV.
The latter yields the same order as the HOC procedure for alkanes with up to nine
vertices and has relatively few inversions for higher alkanes. Interestingly, these inver-
sions arise from the preimposed conventional rules of the HOC algorithm. Without
going into details (for which the original HOC papers should be consulted), it seems
that the LOIS approach may be superior in discriminating between vertices, no pre-
imposed rules being necessary. On the other hand, the HOC algorithm is solved more
rapidly. It might be rewarding to revise the preimposed rules of the HOC procedure in
order to obtain the same ordering as by the LOIS approach (or vice versa, to devise a
LOIS which gives the same ordering as the HOC procedure).

This similarity points to the fact that graph-theoretical approaches usually have
a deeply rooted significance. The graph-theoretical basis of the HMO method is such
an example. Why the HOC procedure and the ordering resulting from the LOIS
approach are so similar remains to be explained.

52. CORRELATIONS WITH CHEMICAL SHIFTS

The HOC ordering was found to be similar to the order of ' H-NMR chemical
shifts of polycyclic aromatic hydrocarbons (PAHs) [22]. Inversions between HOC
ordering and the order of chemical shifts were encountered in the bay and the K
regions of PAHs. As the LOISs nos. 2 (ASV), 3(DSV) and 4 (AZS) give practically the
same ordering as the HOC algorithm, it was expected that these LOISs will correlate
at least qualitatively and intramolecularly with the ! H-NMR chemical shifts of PAHs.
It seemed, therefore, worthwhile to investigate the correlation abilities of LOISs ASV,
DSV and AZS with chemical shifts and to see whether these correlations are quantita-
tive and if they can be used for intermolecular comparisons. Apparently, no simple
correlation exists between the 'H-NMR chemical shifts of the investigated PAHs
(anthracene, phenanthrene, triphenylene, chrysene and benz[a]anthracene) and
LOISs ASV, DSV and AZS. Although a definite correspondence between the LOVIs
and the chemical shifts exists (i.e. a qualitative correlation, as with HOC ranks), it can
not be extended for intermolecular comparisons, especially for LOISs ASV and AZS.
Interestingly, the protons which have the largest deviations are the bay-region and
L -region protons, a fact which might serve as a starting point in studies of carcinogen-
ity versus LOISs of PAHs.

Investigation of *>C-NMR chemical shifts with LOISs of PAHs and correlations
of 'H- and '*C-NMR chemical shifts of acyclic compounds with LOISs are currently
under investigation and will be reported separately.
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5.3. CORRELATIONS OF NEW TOPOLOGICAL INDICES WITH ALKANE BOILING POINTS

The topological index defined for some of the new graph invariants by the
simplest operational stage, namely the simple addition of LOVIs according to formula
(3), was found to correlate extremely well with the boiling points of alkanes. Twenty-
one alkanes (from ethane to n-heptane) were considered for correlations with TI (3)
calculated by means of all twenty LOISs. Poor correlations resulted when employing
LOISs ASV, DSV, DS1, ASN, DSN, DN2N, ANZ, AN1, DSZ and ANN. This is in some
cases due to the narrow range of variation for TI (3), e.g. for LOIS DN?*N this range is
between 0.77 and 0.8 for all the twenty-one alkanes. In other cases, e.g. when LOISs
ASN or DSN are employed, TI (3) yields straight lines separately for the b.p. of each
class of alkane isomers.

Good correlations (#* > 0.95 and standard deviation § < 12°) resulted with
TI (3) based on the remaining LOISs, the best (r?> =0.9983,5 =2.0°, n=21) being
obtained with LOIS AZV. Consequently, we expanded the number of alkanes to 50
(for which excellent data are available [24]), and from a regression analysis we obtained
the quadratic correlation equation (8) with r2 =0.9966 and T =2.9°:

b.p.(°C) = —30.23 - TI(3)? + 20325 - TI(3) — 142.89. (8)

The calculated boiling points by means of eq. (8) are listed in table 4. This represents
the best correlation achieved until now by a single TI with the boiling point of alkanes.
Previous correlations [24] which yielded comparable results made use of Randic’s
connectivity indices ™x, but only when higher-order (m > 3) connectivities were also
taken into account in multiparametric correlations.

From table 4 one can see that the largest deviations of the calculated b.p. by
eq. (8) from the experimental values are encountered for the symmetrically branched
alkanes with at least two side chains, e.g. tetramethylbutane (8.2°), 2, 4-dimethylpentane
(6.3°), 3-ethyl-3-methylpentane (5.8°), 2,5-dimethylhexane (5.2°), 2,2,4,4-tetra-
methylpentane (3.2°), as well as for other branched alkanes, e.g. 2,3,3-trimethyl-
pentane (6.8°), 2,4-dimethylhexane (5.8°), 2,2,4-trimethylpentane (4.7°) and
2,4-dimethylheptane (4.5°).

For the same data set of fifty alkanes, other LOISs give a standard deviation
of at least 7°, thus making the AZV-LOIS the best candidate for future correlations
of boiling points for other substrates.

54, CORRELATION OF TI(3) BASED ON AZV-LOIS WITH VAPORIZATION ENTHALPIES
OF ALKANES

According to Trouton’s empirical rule, the vaporization enthalpies (A H,,,) of
alkanes are dependent on the boiling points. The excellent correlation of TI(3) based
on AZV-LOIS with alkane boiling points prompted us to also investigate the correla-
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Table 4

Calculated and experimental boiling points (°C) and vaporization enthalpies AHvap (kcal>mol™!)
for alkanes

B.p. AH,

vap

No. Alkane TI (3)
Cale.® Exp.? Calc.® Exp.2
1 C, 0.2857 —87.3 —88.6 2.760 2.264
2 C, 05294 —43.8 —422 3.851 3.965
3 2-MeC, 0.7273 —11.1 -11.7 4.744 4.799
4 C, 0.780S - 2.7 - 05 4985 5.191
5 2,2Me,C, 0.8750 11.8 94 5.415 5.345
6 2-MeC, 0.9861 28.1 27.8 5923 6.030
7 C, 1.0303 344 36.1 6.125 6.395
8 2,2-Me,C, 1.1421 49.8 497 6.640 6.651
9 2,3-Me,C, 1.2000 575 58.0 6.907 6.985
10 2-MeC, 1.2346 62.0 60.3 7.067 7.160
11 8-MeC, 1.2437 63.1 63.3 7.109 7.255
12 C, 1.2803 67.8 68.7 7.278 7.555
13 2,2,3Me,C, 1.3646 78.2 80.9 7.669 7.669
14 2,2-Me,C; 1.3891 81.1 79.2 7.783 7.764
15 3,3-Me,C, 1.4079 83.3 86.0 7.871 7.901
16 2,4Me,C, 1.4375 86.8 80.5 8.009 7.872
17 2,3-Me,C; 1.4562 89.0 89.8 8.096 8.191
18 2-MeC, 1.4849 923 90.1 8.230 8.325
19 3-MeC, 1.4924 931 919 8.265 8.391
20 3-EtC, 1.5000 94.0 935 8.301 8.425
21 c, 15303 97.3 98.4 8.442 8.739
22 2,2,4-Me,C; 1.5905 103.9 99.2 8.725 8.402
23 2,2,3,3Me,C, 15385 98.3 106.5 8.481 8.410
24 2,2-Me,C, 1.6397 109.1 106 .8 8.956 8.915
25 2,4-Me,C, 1.6955 1148 109.0 9.218 9.029
26 2,5-Me,C, 1.6897 1142 109.0 9.191 9.051
27 2,2,3Me,C; 1.6194 107.0 109.8 8.860 8.826
28 3,3-Me,C, 1.6552 110.7 112.0 95.028 8.973
29 2,3,4-Me,C, 1.6673 1119 1135 9.085 9.014
30 2,3-Me,C, 1.7052 115.8 114.0 9.264 9.272
31 2,3,3-Me,C; 1.6290 108.0 1148 8.905 8.897
32 3-Et-2-MeC, 1.7111 116 .4 1156 9.292 9.209
33 2-MeC, 1.7348 118.7 117.7 9.403 9.484
34 3,4-Me,C, 1.7127 116.5 117.7 9.299 9.316
35 4-MeC, 1.7411 1193 117.7 9.433 9.483
36 3-MeC, 1.7426 1195 117.0 9.440 9.521
37 3-EtC, 1.7489 120.1 118.0 9.470 9.476
38 3-Et-3-MeC, 1.6723 1125 1183 9.109 9.081
39 C 1.7803 123.1 1257 9.618 9915

8
2,2,4,4Me,C, 1.7419 1194 1227 9.437 9.580

£
lon}
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Table 4 (continued)

B.p. AHvap

No. Alkane TI (3)

Calc.b Exp.a Calc.© Exp.a
41 2,4-Me,C, 1.9442 138.0 1335 - -
42 2,6-Me,C, 1.9393 137.6 135.2 - -
43 2,5Me,C, 1.9474 138.3 136.0 - -
44 3,3-Me,C, 1.9056 134.6 137.3 - -
45 2,3-Me,C, 1.9553 1389 1405 - -
46 4-EtC, 19978 1425 141.2 - -
47 4-MeC, 19913 142.0 142.4 - -
48 2-MeC, 1.9848 1414 142.8 - -
49 3-MeC, 1.9926 142.1 1435 - -
50 2,7-Me,C, 2.1894 157.2 159.6 - -
51 2,2,3Me,C, 1.8686 - - 10.036 9.871
52 2,2,4-Me,C, 1.8488 - - 9942 9.478
53 2,2,5Me,C, 1.8447 - - 9923 9.580
54 2,3,5Me,C, 1.9085 - - 10.226 9910
55 2,2,3,3Me,C; 1.8014 - - 9.718 9.871
56 2,2,3,4Me,C; 1.8290 - - 9.489 9478
57 2,3,3,4-Me,C; 1.8487 - - 9.942 9910
58 Cio 2.2803 - - 12.004 12.276
59 Cia 2.7803 - - 14.437 14.650
60 Ci 3.7803 - - 19.440 19450

aFrom ref. [24]; PWith eq. (8); SWith eq. (9).

tion of TI(3) with AH,,. The results are presented in the second part of table 4;
again, a set of fifty alkanes was considered for which experimental values of AH,,
are of highest quality. The regression analysis yielded the quadratic equation (9), a
correlation coefficient 72> = 0.9945 and a standard deviation § = 0.26 kcal-mol™*:

AHvap (kcal - mol™!) = 0.0923 - TI(3)* + 43977 - TI(3) + 1.4965. )

If instead of the parabolic equation (9) a linear regression is attempted, the
correlation coefficient decreases to 0.9938, the largest deviation encountered being
that for ethane.

Again, this result represents the best correlation of a single TI with AH,,
although by using higher-order connectivity indices [24] (multiple TIs) for nearly the
same data set (44 alkanes), a correlation coefficient r* = 0.9999 and a standard
deviation § = 0.042 kcal - mol ™! were obtained. ”
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§5. OTHER CORRELATIONS WITH LOIS-BASED TIs

Good correlations were also found between motor octane numbers (MON)
of various classes of alkanes (n-alkanes, methylalkanes, dimethylalkanes) and TI(3)
based on LOISs DSV, AZS and especially ASV. The latter is presented in fig. 7 for
n-alkanes and all branched alkanes with one methyl or ethyl side chain. Previous
correlations of MON with TIs gave better correlation coefficients for a larger set of
alkanes [25], not necessarily related structurally.

Other molecular properties were found to correlate satisfactorily with TI(3)
based on AZV-LOIS. The properties include liquid phase densities of alkanes (fig. 8),
and cavity surface areas of alcohols (fig. 9). These areas in turn were used to correlate
nonspecific, local anesthesic properties [26]. The best correlation of partial molal
volumes was found for TI(3) based on LOIS ANN for 33 Cs —C,, alkanes. For ten
n-alkanes (Cs —C,o), a linear regression yielded for molal volumes r= 0.9999 both
versus ANN-LOIS and A, the number of carbon atoms in the n-alkane. Although
better correlations with other different TIs have been presented for these properties
[24 —27], the above examples stress the versatility of the present TIs based on LOISs.

6. Conclusions and perspectives

A new approach for graph-theoretical invariants has been presented; it has
enabled us to explore twenty new such invariants, but many more can be imagined,
and would have to be tested.

On the basis of these new invariants, one may devise a wide variety of topo-
logical indices, characterizing the whole graph by a single number. We tested only a
few of the possible TIs and found which ones have low degeneracy and good correla-
tional ability. There are as yet a few outstanding examples which surpass all others,
but more work is needed before one can reach a definite conclusion and select one
optimal TI. A few chemical correlations were tried, with challenging results.

It is highly interesting that the hierarchical ordering of the vertices in graphs
provided by a few new graph invariants closely resembles the HOC ordering, which
has been shown to correlate with experimental molecular data such as *H-NMR
chemical shifts in polycyclic aromatic hydrocarbons.

The perspectives which are opened by the new graph invariants are varied both
in their mathematical and chemical applications. Thus, one should be able to use
extremal values of vertex invariants for defining the graph center or eccentricity. One
might devise analogously edge invariants based on the new vertex invariants.

Among possible chemical applications, the first one is to continue and diversify
the approach outlined in the present paper. This is being done in our group. Other
attractive areas are to determine whether some of the new vertex invariants have any
chemical significance; this is no easy task, if one remembers that it needed Erich
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TI(3) / AZV - LOIS

Fig. 8. Dependence of the liquid phase density of alkanes (C, —C,) on TI(3) com-
puted with AZV-LOIS (r* =0.904, ¥ =0.01 g-cm™?, n =33). Numbers of alkanes
are as in table 4.
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(1) I-butanol; (2) 2-methyl-1-propanol; (3) 2-butanol; (4) 1-pentanol; (§) 3-methyl-
1-butanol; (6) 2-methyl-1-butanol; (7) 2-pentanol; (8) 3-pentanol; (9) 3-methyl-
2-butanol; (10) 2-methyl-2-butanol; (11) 1-hexanol; (12) 2-hexanol; (13) 3-hexanol;
(14) 3-methyl-3-pentanol; (15) 2-methyl-2-pentanol; (16) 2-methyl-3-pentanol;
(17) 3-methyl-2-pentanol; (18) 2, 3-dimethyl-2-butanol; (19) 3, 3-dimethyl-1-butanol;
(20) 3,3-dimethyl-2-butanol; (21) 4-methyl-1-pentanol; (22) 4-methyl-2-pentanol;
(23) 2-ethyl-1-butanol.

Huckel’s genius to discover that eigenvalues of adjacency matrices correlated with
electronic energies in various orbitals, and that the corresponding eigenvectors (which
are vertex graph invariants) represented contributions of atomic orbitals in the LCAO
method.

One should also stress the fact that the presence of heteroatoms is taken into
account easily and naturally by using atomic numbers Z as property P and/or R;
alternatively, if one wishes to have periodically varying properties, one may use
relative electronegativities or relative covalent radii (with carbon as the standard atom),
as indicated elsewhere [28]. Previous methods for taking heteroatoms into account
[24,29] were fairly unsatisfactory because of their lack of flexibility [29] or of
theoretical motivation [24].
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